| 1. | Second order parallel tensors on quasi - constant curvature manifolds 拟常曲率流形上的二阶平行张量 |
| 2. | Some results on metric averaging in space with nonnegative constant curvature 关于非负常曲率空间中度量平均的几个结果 |
| 3. | On the hypersurfaces with constant mean curvature in a quasi constant curvature space 关于拟常曲率空间中具有常平均曲率超曲面 |
| 4. | Submanifolds with flat connection of normal bundle in a riemannian manifold of quasi constant curvature 拟常曲率黎曼流形中的法联络平坦子流形 |
| 5. | On submanifolds with parallel mean curvature in a riemannian manifold of quasi constant curvature 拟常曲率黎曼流形中具有平行平均曲率向量的子流形 |
| 6. | On the submanifolds with parallel mean curvature in a eiemannian manifold of quasi constant curvature 拟常曲率黎曼流形中具有平行平均曲率向量的子流形 |
| 7. | For geodesic triangle in 2 - dimensional constant curvature space , the author improves some geometric inequalities on its interior angle by theory of majorization 摘要对于二维常高斯曲率空间上的测地三角形,研究了其内角的优超关系,并运用优超理论得到了若干新的关于其三内角的几何不等式。 |
| 8. | Lots of concrete examples are ( , ) - metrics . and one of fundamental problems in finsler geometry is to find and study finsler metrics with constant ( flag ) curvature . on the basic , we majarly study the following problems in present paper : ( a ) to the property of a class of ( , ) - metrics in which is parallel with respect to riemann metric a and riemann metric a is of constant curvature , we obtain the following theorem4 . 3 let f ( , ) be a positive definite metric on the manifold m ( dimm > 3 ) 在finsler几何中,我们现在已知的finsler度量已经很多了,但大多数具体的例子主要都集中在( , ) ?度量中,又在finsler几何中一个基本的问题就是去发现和研究具有常曲率的finsler度量,基于这些本文主要研究了以下一些问题: ( a )一类关于是平行的并且riemann度量具有常曲率的( , ) ?度量的特殊性质,得到了如下的定理4 |
| 9. | In the second part , we investigate the compact submanifolds m with the parallel isoperimetric section in the real space forms rm ( c ) and prove that if there exists a parallel isoperimetric section on m , and the sectional curvature of m is always greater than zero , then m is contained in a hyper - sphere ; and get that the gauss curvature of the compact surfaces m with constant mean curvature in constant curvature space r4 ( c ) is always greater than zero , then m is a totally geodesic surface or a sphere , where an isoperimetric on m means a unit normal vector field defined globally on m with m1 ( ) = constant ( 2 )研究了实空间形式r ~ m ( c )中具有平行等参截面的紧致子流形m ,证明了具有一平行等参截面的子流形m ,如果m的截面曲率恒正,则m包含在r ~ m ( c )的一个超球面内;对于常曲率空间及r ~ 4 ( c )中具有常平均曲率的紧致曲面m ,如果m的高斯曲率处处大于零,则m或为r ~ m ( c )中的全测地曲面或为一球面。这里m上的等参截面是m上整体定义的单位法向量场,使得m关于它的平均曲率m _ 1 ( )是常数。 |